

عضـــو فــي مؤسســــة قطـــر Member of Qatar Foundation

Think Tank

Obtaining SET and WBGT values from thermal camera data

Introduction

- Current metrics for thermal comfort include Standard Effective Temperature (**SET**) and Wet Bulb Globe Temperature (**WBGT**).
- WBGT is widely used in sports, especially football for determining thermal conditions at the stadium.
- Current sensors give only pointwise WBGT values.
- Other systems rely on tools found in the internet for evaluating WBGT/ SET.

Proposed system

- Current methods used are time consuming and require walking across the stadium while holding the sensor.
- The new proposed system provides a map of WBGT/SET values based on data from thermal camera and a weather station (instead of point values).
- The data is provided to the software via WiFi , and the program processes the data to obtain WBGT/ SET.

System description

• The system comprises of hardware and software parts.

• The hardware:

- Thermal camera.
- Sensors for temperature, humidity, wind speed (Weather station).
- Globe temperature sensor.
- WiFi Module.

• The Software:

- The software receives sensors data and stores it.
- The software processes the thermal image and obtains temperature values.
- The GUI is used to display the results.

Benefits of the new system

- WBGT data can be obtained remotely without the need of being in the location where the reading is needed.
- The system provides a map of WBGT/SET in a much shorter time than the time required for obtaining such data using current systems.
- The system can be used in combinations with systems already installed in the stadiums.

• SET is a function of: Air temperature, mean radiant temperature, relative humidity, wind speed, atmospheric pressure, clothing, metabolic rate.

 $SET = f(T_{air}, T_{radiant}, RH, P_{atm}, V, Metabolic rate, Clothing)$

• WBGT can be found from the following equation

 $WBGT = 0.1T_a + 0.7T_{nwb} + 0.2T_g$

• Where the inputs needed are the air temperature, natural wet bulb temperature and globe temperature.

Methodology

- The thermal camera provides temperature at surfaces.
- A correlation can be found between the surface temperature of a certain material (e.g. grass) and the air temperature.
- The other inputs are provided to the system by the sensors (Clothing and metabolic rate are entered by the user).

rmal image analysis

Surface temperature

4

32.3682

32.2518

32.2129

32.2518

32.2129

32.0965

32.0965

32.1741

32.0965

32.0965

32.0576

Wet bulb temperature

 The wet bulb temperature is obtained from the readings of both the temperature (from thermal camera) and the relative humidity sensor.

System Architecture

Software GUI (example)

Appendix: Code

```
function SET=SET Calc fcn(TA, TR, VEL, RH, MET, CLO, WME, PATM)
% Helper function for SET calculates Saturated Vapor Pressure (Torr) at
% Temperature T (°C)
% Input variables - TA (air temperature): °C, TR (mean radiant temperature): °C,
% VEL (air velocity): m/s,
% RH (relative humidity): %, MET: met unit, CLO: clo unit, WME (external work): W/m2 , PATM (atmospheric
% pressure): kPa
KCLO = 0.25;
BODYWEIGHT = 69.9; %kg
BODYSURFACEAREA = 1.8258; %m2
METFACTOR = 58.2; %W/m2
SBC = 0.00000056697; %Stefan-Boltzmann constant (W/m2 K4)
CSW = 170.0;
CDIL = 120.0;
CSTR = 0.5;
LTIME = 60.0;
VaporPressure = RH * FindSaturatedVaporPressureTorr(TA) / 100.0;
AirVelocity = VEL;
TempSkinNeutral = 33.7;
TempCoreNeutral = 36.49;
TempBodyNeutral = 36.49;
```

Appendix: Code

function WBGT=WBGT_Calc(Ta,RH,Tg,P)

% MATLAB function to evaluate the WBGT

T_wb=Twb_calc(Ta,RH,P);

WBGT=0.7*T wb+0.2*Tg+0.1*Ta;

```
function Twb=Twb_calc(T,RH,P)
%calc Twb from Tdb and w using ASHRAE 2013 fundamentals eq. 35
% w isobtained from RH
c_air = 1006; %J/kg, value from ASHRAE 2013 Fundamentals eq. 32
hlg = 2501000; %J/kg, value from ASHRAE 2013 Fundamentals eq. 32
cw = 1860; %J/kg, value from ASHRAE 2013 Fundamentals eq. 32
% w calculation from RH
Pws=Saturation_pressure2(T);
Pw=(RH.*Pws)/100; %partial pressure of water wapor from RH
w=0.621945*Pw./(P-Pw);
```

Appendix: Code

function Pws = Saturation_pressure(Tdb)
%saturated water vapor pressure ASHRAE 2013 fundamentals eq. 6
T=Tdb+273.15;
Pws=exp(-(5.8002206e3)./T+1.3914993+-(4.8640239e-2)*T+(4.1764768e-5)*(T.^2)...
-(1.4452093e-8)*(T.^3)+6.5459673.*log(T)); %in Pa valid for 0 to 200C
Pws=Pws/1000; % in kPa
end

```
function SVP=FindSaturatedVaporPressureTorr(T)
SVP=exp(18.6686 - 4030.183./(T + 235.0));
end
```


Legacy in Action

Dr. Cool: The engineer behind Qatar 2022's air-cooled stadiums

Airborne pathogens, why should we care?

Droplet/aerosols and airborne transmission of infectious diseases are well documented in current research

Airborne pathogens, why should we care?

- Airborne acquired infections can cause significant morbidity, mortality and associated with substantial management cost
- High-efficiency particulate air filters (HEPA) of different grades are the current industry standard
- There are very limited publications addressing the role of controlling the transmission of airborne diseases.
- There is an urgent need for innovating solutions with high efficiency and cost-effectively that address airborne transmission of infectious diseases including COVID-19

Mitigation of airborne transmitted diseases in an indoor environment using a novel cleaning prototype device

*****Assessing the efficacy of the novel porotype device

Comparing the efficacy of the porotype to the standard method

Modified integrated cooler portable unit prototype during bacterial and virus testing

Methodology

25 30 35

Bacterial number (CFU/ml)

Agar plates collected off the six-stage cascade impactor after 30 sec. of applying different air cleaning devices

Effect of EAW on fungus (A. niger)

The effect of EAW on SARS-CoV-19 under an inverted microscope

Effect of EAW on SARS-CoV-2 using RT-qPCR

SARS-CoV-2 virus treated with the electrolyzed water

"As for the air sampling there was more than 80% reduction for the level of bacterial contamination"

Department of Laboratory Medicine and Pathalogy

ENVIRONMENTAL SCREENING REPORT

Laboratory Section: Microbiology

SPECIMEN TYPE	1	Air Sampling	
LOCATION	:	RH-Enaya-F1-Room111	
COLLECTION DATE	:	27/07/2020	
COLLECTION TIME	i.	11:49 am	
COLLECTED BY	÷	Joji -ICP	
DETAILS	12	Hepa Filter Machine testing (Post – Test)	

RESULTS :	Level of Bacterial contamination = 16 Cfu/m ³ 10 Micrococcus species		
	6 Coagulases Negative Staphylococcus		
	Level of Fungal contamination = 1 Cfu/m ³		
	Aspergillus species		
INTERPRETATION:	There are no data on conidial levels that may be considered to be norr but concentrations >25 CFU/m are very high and are associated with increase in the number of cases of IA among patients with risk factors.		

Total average CFU/M² during Dec. 19- March 20 in 4 PHCC

Conclusions

- Our air novel cleaning prototype device exhibited efficiency using SARS –CoV-2, Newcastle virus, *E. coli*, and *Aspergillus* at laboratory level.
- The technology showed its efficacy at health facility level as well.

The application is novel, marketable and will have a global impact not on hospitals' infection control strategies only but in all indoor public places.

3500x250 SUPPLY AIR GRILL

Case B : Velocity contours, horizontal plane, height = 1 m, v_{max} = 18 km/h

37

Case#4.2: Velocity contours, horizontal plane, height = 2 m, v_{max} = 18 km/h

Case B: Velocity contours, vertical plane 1, v_{max}=18 km/h

Case B: Velocity contours, vertical plane 2, v_{max}=18 km/h

39

Case B: Velocity contours, vertical plane 3, $v_{max} = 18 \text{ km/h}$

Baffle	Exhaust Fans	Free Stall Fans (F1)	Feed La	ne Fans (F2)	Intake Fans(F3)	Side Wall	Fans(F4)
NON ACTIVE	RUNNING	RUNNING		-	RUNNING	-	
Ventilation Flow rate (m³∕S)		Sec/Air Exchange		Average Velocity over the stalls are at 1m Height (km/hr)			
355		95		18		40	

Video

Current Greenhouse

Designed Greenhouse

Sun Ray Trajectories

Average DLI during Summer

DLI inside the Designed Greenhouse – June

Current Greenhouse – Solar Gain and Cooling Load – Transmission=70%

Current Greenhouse – Temperature and Humidity – Transmission=70%

Current Greenhouse – Solar Gain and Cooling Load – Transmission=30%

Current Greenhouse – Temperature and Humidity – Transmission=30%

Designed Greenhouse – Solar Gain and Cooling Load

Designed Greenhouse – Temperature and Humidity

15 Jul, Sub-hourly

Radiant Temperature **Operative Temperature** Outside Dry-Bulb Temperature

Comparison – Transmission=30%

	Current Greenhouse, T=30%	Designed Greenhouse
Maximum Solar Gain, <i>kW</i>	59.42	28.49
Maximum Cooling Load, <i>kW</i>	42.05	10.78
Daily Light Integral, <i>mol/m</i> ²	13.5	18

Comparison – Transmission=70%

	Current Greenhouse, T=70%	Designed Greenhouse
Maximum Solar Gain, <i>kW</i>	127.47	28.49
Maximum Cooling Load, <i>kW</i>	64.52	10.78
Daily Light Integral, mol/m ²	31.5	18

Capital Cost

Item	Quantity	Unit Price, \$	Extended, \$
Lens Mold	1	1,500	1,500
Lens	550	4.50	2,475
Weather Station	3	3,365	10,095
		Total	14,070

SOLAR-POWERED, COOLED HELMETS How do they work?

- It can reduce temperature for construction workers in hot working environments by up to 10 degrees centigrade.
- Cooled helmet.
 The cooled helmets will be rolled out across SC construction sites for the

coming summer.

Researchers at Qatar University, working with the Supreme Committee for

Delivery & Legacy (SC) and Aspire, have developed an innovative solar-powered,

Workers Helmet

Establishing the thermal effect of different Workers Helmet Colors. Passively and for the same solar exposure, White has the best thermal passive performance Yellow has a difference of 3.8 °C Red has a difference of 7°C

Q22 Smart Helmet

Q22 Smart Helmet

Fan effect on air velocity and distribution

Temperature distribution around worker's head

Patented Technology

Made Available to the Academia and Researchers

Research Paper

The effect of forced convection and PCM on helmets' thermal performance in hot and arid environments

Saud Ghani^{*}, Esmail Mohame Ali Ahmed ElBialy, Foteini Bakochristou, Seifelislam Mahmoud Ahmad Gamaledin, Mohammed Mohammed Rashwan

Qatar University, Mechanical and Industrial Engineering, Doha 2713, Qatar

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

ARTICLE INFO

ABSTRACT

خوخ مكيفة تعمل بالطاقةالشمسية كيف تعمل؟

طوّر باحثون من جامعة قطر بالتعاون مع اللجنة العليا للمشاريع والإرث وأسباير خوخة مكيفة مبتكرة تعمل بالطاقة الشمسية.

● تساعد على تخفيض الحرارة على عمال البناء العاملين في ● سيتم توزيع هذه الخوذ المكيفة في مواقع البناء التابعة أجواء العمل الحارة بنسبة تصل إلى ١٠ حرجات مئوية للجنة العليا للمشاريع والإرث خلال فصل الصيف القاحم.

SOLAR-POWERED, COOLED HELMETS How do they work?

Researchers at Qatar University, working with the Supreme Committee for Delivery & Legacy (SC) and Aspire, have developed an innovative solar-powered, cooled helmet.

 It can reduce temperature for construction workers in hot working environments by up to 10 degrees centigrade.

• The cooled helmets will be rolled out across SC construction sites for the coming summer.

Helmet Side View

Helmet Front View

Q22 Smart Helmet

Phase Channing Material (PCM) Inner Pouch

Site Trials

Khalifa Stadium Worker on a Passive Blue Helmet Thermal Imaging Result (19th Nov 2016)

Khalifa Stadium Worker on the Solar Helmet Thermal Imaging Result (19th Nov 2016)

> Maximum Helmet Maximum Facial Hair Temperature of 28 °C Temperature of 29 °C Maximum Glasses Spot 22.8 °C 40.7 Temperature of 34 °C Maximum headcover Temperature of 30 °C OFLIR Dist = 1.0 Trefl = 20.0 ε = 0.95

Services Buildinercial Stock The Washington Post Democracy Dies in Darkness

Sign In 👤 Try 1 month for \$1

2°C: BEYOND THE LIMIT

Facing unbearable heat, Qatar has begun to air-condition the outdoors

BALADNA

-

