High-performance carbon capture membrane made of atom-thick filter

Prof. Kumar Varoon Agrawal

GAZNAT Chair of Advanced Separations

Institute of Chemical Sciences & Engineering

École Polytechnique Fédérale de Lausanne (EPFL)

EPFL

Impact of increasing CO₂ emissions on climate and industry

Source: IPCC 6th Assessment Report

Commercial solution: CO₂ absorption by liquid amines

Membrane-based solution: CO₂ permeation by a selective film

3

EPFL

Atom-thick porous graphene film for sieving gases

Gases can be separated based on their relative size

	Kinetic diameter (Å)
Не	2.60
H ₂	2.89
CO ₂	3.30
02	3.46
N_2	3.64
CH4	3.80

Nature Communications 2018, 9, 2632 Carbon **2019**, 153, 458 Science Advances 2019, 5, eaav1851 Energy & Environmental Sciences 2019, Scientific Reports **2019**, 5, 5202 Advanced Functional Materials 2020, 30 Journal of Membrane Science 2020, 612 Journal of Membrane Science **2021**, 618, 118745 Carbon **2021**, 173, 980

- ~Atom-thick pores \rightarrow Ultrafast CO₂ transport
- ~Å-scale pores \rightarrow Selective CO₂ transport over N₂

Flux $\propto Hexp(\frac{-E_{barrier}}{k_{B}T})$

),	12,	3305
,	۱۷,	2202

0,	2003979		
2,	118406		
Q	1107/5		

Journal of Membrane Science **2021**, 624, 119103 Journal of Membrane Science 2021, 637, 119628 Science Advances **2021**, 7, eabf0116 PNAS **2021**, 118, e2022201118 ACS Nano **2021**, 15, 13230 Industrial & Engineering Chemistry Research, 2021, 60, 16100 JACS Au, **2022,** 2, 723 Angewandte Chemie, **2022**, 61, e202200321 Accounts Mater. Res. 2022, 3, 1073

Patent Application WO2018/177533A1 Patent Application WO2019/175162A1 Patent Application WO2020/011892A1 Patent Application EP20166877 Patent Application EP20174809

Simple scalable chemistry for introducing CO₂sized pores in graphene

Pores are formed by flowing ozone over graphene + energy (heating)

That's it

. . .

Huang, Villalobos, Li, Bondaz, Agrawal, Advanced Materials, 2022 (In press)

Visualization of pore formation inside an electron microscope

Ozone

Proof-of-principle on formation of CO₂-selective pores by oxidation

EPFL Attractive performance of graphene membrane for postcombustion capture

Energy Environ. Sci., **2019**, 12, 3305–3312 Science Advances **2021**, 7, eabf0116 ACS Nano **2021**, 15, 13230 PNAS **2021**, 118, e2022201118

7

EPFL Rapid advance in the scale-up of the technology in last four years

Millimeter scale (2018)

Centimeter scale (2021)

Nature Communications **2018**, 9, 2632 Science Advances 2019, 5, eaav1851 Carbon 2019, 153, 458–466. Journal of Membrane Science 2020, 612, 118406. Ind. Eng. Chem. Res, **2021**, 60, 16100

Journal of Membrane Science **2021**, 618, 118745 Science Advances **2021**, 7, eabf0116

ACS Nano **2021**, 15, 13230

Meter scale (10 kg CO₂/day) (Ongoing)

CANTON DU VALAIS KANTON WALLIS

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

EPFL

Large area graphene on low-cost Cu foil by CVD

Reduction in cost of the material by 100fold

Acknowledgements

Material Chemist

Dr. Jian Hao

Dr. Marina Micari

Process Design Mechanical Engineer

Mr. Piotr Gach

Swiss Federal Office of Energy SFOE

Thank you

Prof. Kumar Varoon Agrawal

GAZNAT Chair of Advanced Separations

kumar.agrawal@epfl.ch

EPFL

http://epfl.ch/labs/las