

FOOD L&W CLIMATE IMPACT

Loss and Waste

- Total edible food wastage is 1.3 billion tons
 - \$1000 billion each year of economic cost
 - \$700 billion each year of ecologic cost
 - \$900 billion each year of social cost
- 50% of fresh fruits and vegetables are lost or wasted
- 30% of the world's people do not have enough food
- 15% to 50 % of nutrients are lost within a week of harvest

Sources: Food Wastage Footprint - Impacts on Natural Resources. Summary Report, FAO 2013

⇒ Emitted or produced to no purpose

- 6% of GHG emissions due to loss and waste
 (3.3 billion tons three times the share for aviation)
- ★ 38% of total energy usage in food system due to loss and waste
- 28% of world agriculture area for loss and waste (1.8 billion hectares of lands)
- * 28% of biodiversity avoidable losses
- ★ 250 km³ of water due to loss and waste (three times Leman lake volume)

Food Supply Chain creates ~13 B Tons CO₂Eq (26% of 51 billion tons per year GHG emissions)

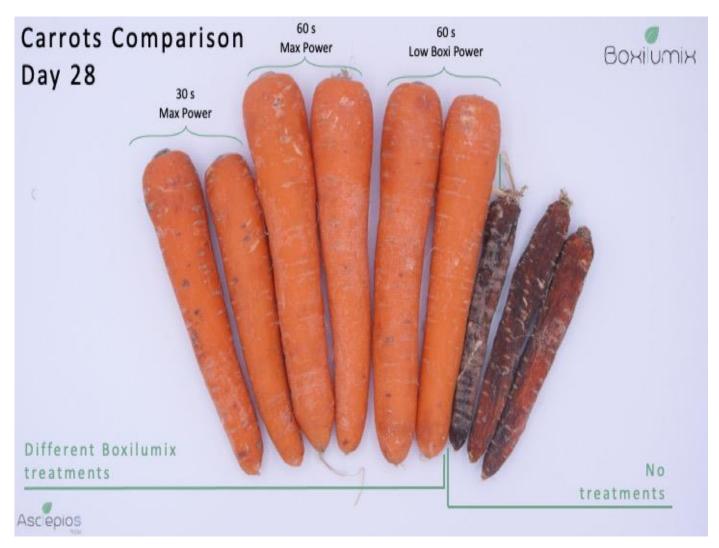
CHALLENGES

- Reduce L&W in farm2fork supply chain by increasing sustainable preservation of the most fragile and valuable products: seeds, fruits, vegetables, tubers, cereals
- Deliver improved profitability with a positive ecological and climate impact in a "one health" approach

Benefits

- Meet COP26 objectives to tackle climate change (SDG 13)
- Meet the world's food needs (SDG 2 & 3)
- Fight against food loss and waste by making fruits & vegetables more resistant (SDG 2 & 12)
- Enable cultivation of high value-added F&V in rural, urban areas, conflict zones and fragile contexts (SDG 1, 3, 11 & 16)
- Reduce the risk of food contamination from fresh F&V and help preserve product quality (SDG 2 and 12)
- Create employment in the agricultural production chain, especially for youth and vulnerable groups, such as migrants (SDG 4 & 8)
- Promote the empowerment of women by making fruit and vegetable production and value chains more sustainable (SDG 5)

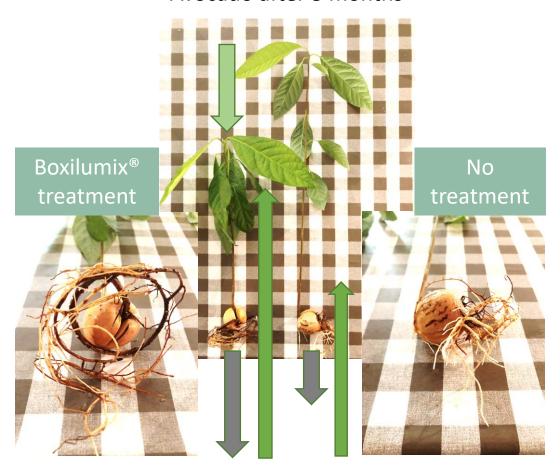
A healthily bright idea: Boxilumix®

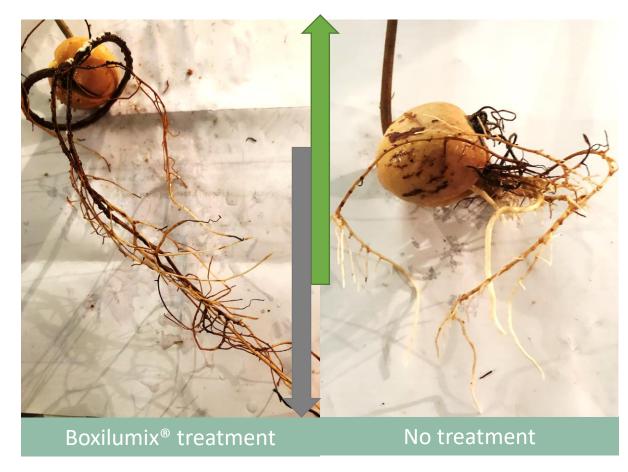

Farm 2 fork sustainable innovative digitalized non-thermal lighting solution
 Efficient - Accurate - Linked to knowledge database
 Energy-efficient - Repairable - Life cycle management
 Low pollution: water and noise free

- Growing immune defenses of plants by soft signaling
 Reducing agrochemical products use, softening, water mass product loss and waste (up to 50%)
 Efficient decontamination of seeds, fruits and vegetables and water (99,99%)
 Enhancing natural preservation in refrigerated and ambient temp. (up to 4 times their shelf life)
 Nutritious flavorful durable healthy agro-food
- SDG: Contribute to 10 among 17 UN Sustainable Development Goals
- Green Deal: halve global emission by 2030, deliver a healthier, fairer zero carbon world in time
- SIF: Ecologic and economic impact solarimpulse.com/efficient-solutions/boxilumix
- International Food Waste Coalition IFWC- Innovation Lab extend Shelf Life:
 https://internationalfoodwastecoalition.org/resources/innovation-lab/extend-shelf-life/

PRESERVATION ENHANCEMENT

WHICH ONE DO YOU PREFER?





ROOTS BENEFITS

Avocado after 3 months

Roots & branchs signaling impacts

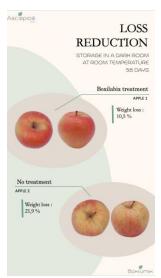
Carbon mass stands for ~ 50% Roots mass Main root stronger, deeper, ~ 50%

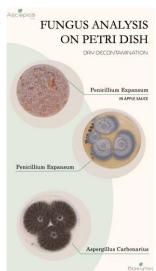
BEST VALUE PROPOSITION

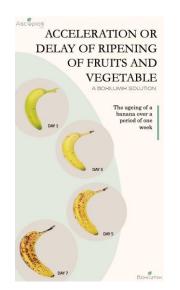
Increase fair incomes to producers

Reduce loss in agriculture value chain

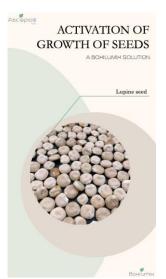
Reduce chemicals, energy and water use






Provide healthier nutritious food to consumers

Reduce retails and home food waste


Preserve soil and manage CO₂ sequestration

CONTACT

AGRI SUD-OUEST

Christine ROYNETTE

christine.roynette@asclepiostech.com + 33 (0)6 86 20 74 88

www.asclepiostech.com www.boxilumix.com

Follow us on LinkedIn



https://fr.linkedin.com/company/asclepios-tech

CLIMATE BENEFITS

	Pre Harvest	Post Harvest	ipact categories (with respective EF impact category indicators) and EF impact or PEF studies		
Climat change			EF Impact Assessment Model	EF Impact Category indicators	Source
Ozone depletion	_ /		Bern model - Global Warming Potentials	kg CO ₂ equivalent	Intergovernmental Panel on Climate
lonising		11/	(GWP) over a 100 year time horizon. EDIP model based on	kg CFC-11 equivalent	Change, 2007 WMO, 1999
radiaotion, HH			the ODPs of the World	ng er e 12 equitatent	
Photo-chemical Ozone formation	More than 90% reduction compared to traditional technics based on distribution of pesticides & fungicides		Meteorological Organization (WMO) over an infinite time horizon.		
Acidification		15 - 50% compared to traditional	USEtox model	CTUe (Comparative Toxic Unit for ecosystems)	Rosenbaum et al., 2008
Eutrophication			Etox model	CTUb (Comparative Toxic Unit for	Posenhaum et al
freshwater			USEtox model	CTUh (Comparative Toxic Unit for humans)	Rosenbaum et al., 2008
Eutrophication terrestrial			RiskPoll model	kg PM2.5 equivalent	Humbert, 2009
Eutrophication		technics	Human Health effect model	kg U ²³⁵ equivalent (to air)	Dreicer et al., 1995
freshwater			LOTOS-EUROS model	kg NMVOC equivalent	Van Zelm et al., 2008 as applied in ReCiPe
Ecotoxicity			Accumulated Exceedance model	mol H+ eq	Seppälä et al.,2006; Posch et al., 2008
freshwater			Accumulated Exceedance model	mol N eq	Seppälä et al.,2006; Posch et al., 2008
Water use			EUTREND model	fresh water: kg P equivalent marine: kg N equivalent	Struijs et al., 2009 as implemented in ReCiPe
Ressource use, energy carriers			Swiss Ecoscarcity model	m ³ water use related to local scarcity of water	Frischknecht et al., 2008
			CML2002 model	kg antimony (Sb) equivalent	van Oers et al., 2002
Ressource use, mineral & metals			Soil Organic Matter (SOM) model	Kg (deficit)	Milà i Canals et al., 2007
Generic example computed for apple orchards			ofluoromethane, also called freon-11 or R-11, is a chlorofluorocarbon. te Matter with a diameter of 2.5 µm or less. ethane Volatile Organic Compounds		

